中华人民共和国国家标准

商品条码 128 条码

Bar code for commodity－ 128 bar code
中华人民共和国国家质量监督检验检疫总局
中国国家标准化管理委员会
发 布

目 次

前言 III
1 范围 1
2 规范性引用文件 1
3 术语和定义 1
4 要求 1
4.1 符号结构 1
4．2 GS1－128 条码字符集 2
4.3 心寸要求 8
4.4 参考译码算法 8
4.5 符号质量 11
5 GS1－128 条码的应用参数 12
5.1 符号高度 12
5.2 符号长度 12
5.3 供人识别字符 13
5.4 符号等级要求 13
5.5 传送数据（ FNCl ） 13
6 GS1－128 条码字符串编矿／泽确规则 13
6.1 使用应用标识符利篮接的 GS1－128 条码基本结构 13
6.2 链接 15
6.3 分隔字符（ $\mathrm{FNC1}$ ） 16
6．4 ITF－14 与 GS1－128 条码及其他码制的混合使用 16
6.5 符号位置 16
附录 A （资料性附录）GS1－128 条码符号长度最小的字符集选择及应用示例 17
附录 B（资料性附录）条矿字符值与 ASCII 值的关系 19
附录 C（规范性附录）GS1－128 条码符号校验字符值的计算方法 20
附录 D（资料性附录）GS1－128 条码符号的处理 基本逻辑 21

前 言

本标准按照 GB／T 1.1 2009 给出的规则起草。
本标准所规定的 128 条码是 GB／T 18347《128 条码》的应用子集。
本标准代替 GB／T 15425－2002《EAN•UCC 系统 128 条码》，与 GB／T 15425－－2002相比主要技术变化如下：
——标准名称改为《商品条码 128 条码》；
……国际组织EAN•UCC 更名为 GSI（国际物品编码协会），因此对标准中该标准化组织的名称进行了对应的修改；
…资料性附录 Λ 增加了符号长度最小规则的应用示例；
…一根据新版《GS1 规范（V10）》进行编辑性修改。
本标准参照 GS1制定的《GS1 规范（V10）》第五章第4节＂线性条码…GS1－128条码规范＂，并结合我国的实际情况进行了修订。

本标准由全国物流信息管理标准化技术委员会（SAC／TC 267）提出并归口。
本标准起草单位：中国物品编码中心，浙江省物品编码中心，陕西省标准化研究院，宁波市标准化研究院，湖南省标准化研究院，河南省标准研究院，北京物资学院。

本标准主要起客人：张楠，丁炜，刘力真，杜景荣，张堷英，周勤，楼庆华，李长，龚贺，干成林。
本标准所代替布淮的历次版本发布情况为：
GB／T15425 1994，GB／T 15425 2002。

商品条码 128 条码

1 范围

本标准规定了 GS1 系统 128 条码（以下称 GS1－128 条码）的结构，条码字符集，条码符号尺寸，质量保证，以及 GS1－128 条码的应用参数，字符串编码和译码规则符内容。

本标准适用于商品条码系统中的自动识別和数据采集。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件，仪注日期的版本适用于本文件。凡是不注日期的引用文件，其最新版本（包括所有的修改单）适用于本文件。

GB／T 1988 信息技术 信息交换用七位编码字符集
GB／T 12508 光学识别用字母数字字符集 第一部分：（OCR－B 字符集印刷图象的形状和犬寸
GB 12904 商品条码 零售商品编码与条码表示
GB／T 12905 条码术语
（GB／T 14257 商品条矿 条码符号放置指南
GB／T 16986 商啡条例 应用标识符
GB／T 18347128 条们
（GB／T 18348 商品条码 条码符号印制质量的检验

3 术语和定义

GB 12904，GB／T 12905 中界定的术语和定义适月于本文件。

4 要求

4.1 符号结构

GS1－128条码符号的组成，由左至右如下所示：
a）左侧空白区；
b）双字符起始图形包括一个起始符（Start A，Start B 或 Start C）和 FNC1 字符；
c）表示数据和特殊字符的一个或多个条码字符（包括应用标识符）；
d）校验符；
c）终止符；
f）右侧空白区。
条码符号所表示的数据字符，以可供人识别的字符表示在符号的下方或上方。
GS1－128 条码符号的基本格式如图1所示。

0	0	3	5	0	1	2	3	4	5	1	2	3	4	5	6	7	8

右侧空白区

图1 GS 1－128 条码符号的基本格式

4．2 GS1－128 条码字符集

4．2．1 条码字符集表

GS1－128 条码字符集见表1，其中单元宽度列中的数值表示模块的数目。
表1 GS 1－128条码字符集 A，B，C

符号 字符	字符 集 Λ	ASCII 值字符集 Λ	符 集 B	ASCII 值等符集 B	$\begin{aligned} & \text { 等 } \\ & \text { 集 C } \end{aligned}$	前元栾度 （㭲块数）						条，空排列									
值						B	S	B	S	B	S	12	3	4	5	6	7	8	9	10	1！
0	space	32	space	32	00	2	1	2	2	2	2										
1	！	33	！	33	01	2	2	2	1	2	2										
2	＂	34	＂	34	02	2	2	2	2	2	1								Patik		
3	\＃	35	$\#$	35	03	1	2	1	2	2	3										
4	\＄	36	\＄	36	04	1	2	1	3	2	2			2				＂			
5	\％	37	\％	37	05	1	3	1	2	2	2										
6	\＆	38	\＆	38	06	1	2	2	2	1	3										
7	．．．	39	．．．	39	07	1	2	2	3	1	2	6							en		
8	（	40	（	40	08	1	3	2	2	1	2								W		
9	）	41	）	41	09	2	2	1	2	1	3										
10	＊	42	＊	42	10	2	2	1	3	1	2				Exal						
11	$+$	43	$+$	43	11	2	3	1	2	1	2								E		
12	，	44	，	44	12	1	1	2	2	3	2										
13	－	45	－	45	13	1	2	2	1	3	2										
14	－	46	。	46	14	1	2	2	2	3	1										

表1（续）

符舀 字符 值	字符 集 Λ	ASCII 值字符集 Λ	字符 集 B	ASCII 值争符集 B	字符 集 C	单元宽度 （模块数）						条，穿排列										
						B	S	B	S	B	S	1	2	3	4	5	6	7	8	9	10	11
15	1	47	1	47	15	1	1	3	2	2	2			－					2			
16	0	48	0	48	16	1	2	3	1	2	2									ex		
17	1	49	1	49	17	1	2	3	2	2	1				5					2		
18	2	50	2	50	18	2	2	3	2	1	1											
19	3	51	3	51	19	2	2	1	1	3	2											
20	4	52	4	52	20	2	2	1	2	3	1	\％										
21	5	53	5	53	21	2	1	3	2	1	2				1							
22	6	54	6	54	22	2	2	3	1	1	2											
23	7	55	7	55	23	3	1	2	1	3	1					kis						
24	8	56	8	56	24	3	1	1	2	2	2	\％										
25	9	57	9	57	25	3	2	1	1	2	2											
26	：	58	：	58	26	3	2	1	2	2	1									6		
27	；	59	；	59	27	3	1	2	2	1	2											
28	$<$	60	$<$	60	28	3	2	2	1	1	2						2					
29	$=$	61	：	61	29	3	2	2	2	1	1											
30	＞	62	$>$	62	30	2	1	2	1	2	3											
31	？	63	？	63	31	2	1	2	3	2	1											
32	（a）	64	（a）	64	32	2	3	2	1	2	1											
33	A	65	A	65	33	1	1	1	3	2	3	4										
34	B	66	13	66	31	1	3	1	1	2	3											
35	C	67	C	67	35	1	3	1	3	2	1											
36	D	68	1）	68	36	1	1	2	3	1	3											
37	E	69	E	69	37	1	3	2	1	1	3											
38	F	70	F	70	38	1	3	2	3	1	1	Kixis										
39	G	71	G	71	39	2	1	1	3	1	3								K			
40	H	72	H	72	40	2	3	1	1	1	3								W			
11	I	73	1	73	41	2	3	1	3	1	1										K	
42	J	74	J	74	42	1	1	2	1	3	3											
43	K	75	K	75	43	1	1	2	3	3	1										\％	
44	1.	76	L	76	44	1	3	2	1	3	1											
45	M	77	M	77	45	1	1	3	1	2	3											
46	N	78	N	78	46	1	1	3	3	2	1									，		

表1 (续)

表1（续）

符步 字符 值	字符 集 A	ASCII 值字符集 Λ	字符 集 B	$\Lambda \mathrm{SCII}$ 值字符集 B	字符 集 C	单元宽度 （模块数）							条，空排列									
						B	S	S I	B	S	B	S	1	2	3	4	5	6	7	$8 \quad 9$	10	11
79	SI	15	0	111	79	1	3	34	4	1	1	1	2								人	
80	DIE	16	p	112	80	1	1	11	1	2	4	2	析		产							
81	DC1	17	q	113	2 81	1	2	21	1	1	4	2	\％			\％						
82	DC2	18	r	114	82	1	2	21	1	2	4	1										
83	DC3	19	s	115	83	1	1	14	4	2	1	2			\％							
84	DC4	20	t	116	84	1	2		4	1	1	2								\％		
85	NAK	21	u	117	85	1	2	24	4	2	1	1				6						
86	SYN	22	v	118	86	4	1	11	1	2	1	2								人		
87	ETB	23	w	119	87	4	2	21	1	1	1	2				5						
88	CAN	24	x	120	88	4	2	21	1	2	1	1									＂	
89	EM	25	y	121	89	2	1	$\begin{array}{l\|l} 1 & 2 \\ \hline \end{array}$	2	1	4	1									－	
90	SUB	26	z	122	90	2	1		4	1	2	1										
91	ESC	27	\｛	123	91	1	1	2	2	1	2	1		放気								
92	FS	28	1	124	92	1	1	1	1		4	3										
93	GS	29	\}	125	93	1	1	1	1	3	4	1	新									
94	RS	30	\sim	126	94	1	3	1	1	1	4	1										
95	US	31	DEI．	127	95	1	1	4	4	1	1	3	+9									
96	FNC3		FNC3		96	1	1	4	4	3	1	1				\％					6＂	
97	FNC2		FNC2		97	4	1	1	1	1	1	3										
98	SHIFT		SHIFT		98	4	1	1	1	3	1	1				\％						
99	CODE C		CODE C		99	1	1	3	3	1	4	1				2						
100	CODE B		FNC4		CODE 13	1	1	4	4	1	3	1										
101	FNC4		CODE Λ		CODE Λ	3	1	1	1	1	4	1										
102	FNCl		FNCl		FNCl	4	1	1	1	1	3	1										
103			Start A			2	1	1	1	4	1	2										
104			Start B			2	1	1	1	2	1	4										
105			Start C			2	1	1	12	2	3	2							\％			
符号 字符	字符	ASCII 值	字符	ASCII 值	字符				无宽	宽度 数							条，	空排	非列			
值	集 A	字符集 Λ	集 B	学符集 B	集 C	B	S	B	S	B	S	B	1	2	3	5	6	7	8	1011	112	13
			Stop			2	3	3	1	1	1	2					－	2	縺			26

注：终止字符由1 4 个条和 3 个空，共 13 个模块组成。单元宽度列表中用 BS 表示条码符号中的条空组合，B 表示条，S 表示空。

4．2．2 条码字符结构

每个条码字符（终止符除外）由 6 个单元 11 个模块组成，包括 3 个条， 3 个空，每个条或空的宽度为 1 个～4 个模块。终止符由 4 个条， 3 个空共 7 个单元 13 个模块组成。

在条码字符中条的模块数为偶数，空的模块数为奇数，这一奇偶特性使每个条码字符都具有白校验功能。

起始符 A 的符号表示见图2。

图 2 GS 1－128 条码起始符为＂Start A＂的结构
条码字符值为 35 的符号表示见图3。35在字符集 Λ 或 B 中为＂ C ＂，在字符集 C 中为两位数字 ＂ 35 ＂。

终止符的符号表示见图4。

图4 GS1－128 条码符号的终止符结构

4．2．3 数据字符编码

GS1－128 条码的 3 个字符集 A，B，C 见表1所示。其字符集点 GB／T 18347 所示字符集相同。
字符集 $A, ~ B$ 和 C 给出了数据字符的条，空组合方式，字符集的选择依赖于起始符 Start A（Start B或 Start C），切换字符 CODE A（B 或 C）或转换字符（SHIFT）的使用。如果条码符号以起始符 START A 开始，则最先确定了字符集 A ；如果条码符号以起始符 STARTB开始，则最先确定了字符集 B；如果条码符号以起始符 START C 开始，则最先确定了字符集 C。通过使用切换字符 CODE A（B 或 C）或转换字符（SHIFT）可以在符号中重新确定字符集（这些特殊字符的使用见4．2．4）。

通过使用不同的起始符，切换字符和转换字符，同一数据可表示为不同的 GS1－128 条码符号。具体应用中无须规定所要使用的字符集。附录 A 给出了使任何给定数据的符号长度最小的规则及

示例。译码器应能够通过与附录 Λ 中说明的起始符，切换和转换字符不同的有效组合来对符号进行译码。

每个条码字符对应一个数值，见表1。该数值用于计算符号校验字符的值，同时也可用于与 ASCII值之间的转换（参见附录 B）。

4．2．4 字符集

4．2．4．1 字符集 A

字符集 A 包括所有标准的大写英文字母，数字字符 $0 \sim 9$ ，标点字符，控制字符（ASCII 值为 00 至 95的字符）和 7 个特殊字符。

4．2．4．2 字符集 B

字符集 B 包括所有标准的大写英文字母，数字字符 $0 \sim 9$ ，标点字符，小写英文字母字符（ASCII 值为 $32 \sim 127$ 的字符）和 7 个特殊字符。

4．2．4．3 字符集 C

字符集 C 包括 100 个两位数字 $00 \sim 99$ 和 3 个特殊字符。采用字符集 C 时，每个条码字符表示两位数字。

4．2．5 特殊字符

4．2．5．1 特殊字符范围

字符集 A 和字符集 B 的最后 7 个豆符（字符值为 $96 \sim 102$ ）和学符集 C 的最后 3 个字符（字符值为 100～102）是特殊的非数字字符，没有对位的 ASCII 字符，它们对识读设备有特殊的意义。

4．2．5．2 切换字符（CODE）和转换字符（SHIFT）

在一个 GS1－128 条码符步中，切换字符和转换字符用于将一个字符集转换到另一个字符集，其中：
a）切换字符
切换字符 CODE $A(C O D E B$ 或 CODE C）将先前确定的字符集转换到切换字符所制定的新的字符集 Λ（字符集 B 或字符集 C）。这种转换适用于切换字符后面的所有字符，直至符号结束或遇到另一个切换字符或转换字符。
b）转换字符
转换字符SHIFT 将转换字符之后的一个字符从字符集 Λ 转换到字符集 B 或从字符集 B 转换到字符集 Λ 。在被转换字符后面的字符将自动恢复到转换字符前定义的字符集 A 或字符集 B 。

4．2．5．3 功能字符（FNC）

功能字符用于向条码识读设备指示所允许的特殊操作或应用，其中：
a）起始符 Start A（Start B 或 Start C）后面的 FNC1 是专门保留，用于标识 GS1 系统的。FNC1可以作为校验符。
b）FNC2（信息添加）用于指示条码识读设备，将包含 FNC2 字符的信息临时储存起来，作为下一个符号内容的前缀传送。在传送前，有可能要链接几个符号。该字符可以出现在符号的任何位置。如果数据的顺序是有意义的，则需要确定符号按正确的顺序识读。
c） FNC 3 （初始化）用于指示条码识读设备，将包含 FNC 3 字符的符号中的数据作为初始化指示或

GB／T 15425－2014

对条码识读器的重新编程。该字符可以出现在符号中的任何位置上。
d）FNC4 不在 GS1 系统中使用。

4．2．5．4 起始符和终止符

起始符 Start $\Lambda($ Start B 或 Start C）定义了符号开始时使用的字符集。所有字符集的终止符 Stop都是相同的。

4．2．6 校验符

校验符是条码符号终止符前面的最后一个字符，其计算方法见附录 C 。在供人识别的字符中不标识校验符。

4．2．7 GS1－128 条码起始符

GS1－128 条码采用双字符起始符，其结构为：Start Λ（Start B 或 Start C）+ FNC1。这一双字符起始符号能够区分 GS1－128 条码和普通的 128 条码。
如果一个 128 条码以此双字符起始符号开始，则一定是一个 GS1－128条码符号；反之，则一定不是 GS1－128 条码符号。

FNC1 可以作为符号校验字符（可能性小于 1% ）。当把多个应用标识符及其数据域放在一个条矽符号中时，FNC1 作为分隔符使用。

Start A 使用 GS1－128 条码以字符集 A 开始。
Start B 使用 GS1－128 条码以字符集 B 开始。
Start C 使用 GS1－128 条码以字符集 C 开始。Start C 通常用于包括应用标识符在内的以 4 个或 4个以上的数字开始的数据。

4.3 尺寸要求

4．3．1 最小模块宽度（ \boldsymbol{X} ）

最小模块宽度由具体应用的规范确定，并根据产品及识读设备的实用性决定，还要遵守应用的一般要求。在 GS1应用环境中，最小的 X 大寸为 $0.250 \mathrm{~mm}(0.00984 \mathrm{in})$ ，最大的 X 大寸为 1.016 mm （ 0.040 in ）。每个应用都应说朋一个 X 尺寸的标称值和范围。

在一个给定的系统中 X 尺寸应为一个始终不变的定值。

4．3．2 空白区

GS1－128 条码左右侧空白区的最小宽度为 $10 X$ 。

4.4 参考译码算法

条码识读系统是为在实际算法允许范围内可以识读有缺陷的条码符号而设计的。在本节所描述的参考译码算法中，可译码度的值的计算见 4．5．2。

对每个条码字符译码的步骤如下：
a）计算 8 个尺寸的宽度 $p, ~ e_{1}, ~ e_{2}, ~ e_{3}, ~ e_{4}, ~ b_{1}, ~ b_{2}$ 和 b_{3}（见图5）。

图5 译码尺寸
b）将 $e_{1}, ~ e_{2}, ~ e_{3}$ 和 e_{4} 转换为一般八寸值 $E_{1}, ~ E_{2}, ~ E_{3}$ 和 E_{4} ，表小为模块宽度（ X ）的整数倍。第 i 个值的计算方法如下：
如果 $1.5 p / 11 \leqslant e_{i}<2.5 p / 11$ ，则 $E_{i}=2$ ；
如果 $2.5 p / 11 \leqslant e_{i}<3.5 p / 11$ ，则 $E_{i}=3$ ；
如果 $3.5 p / 11 \leqslant e_{i}<4.5 p / 11$ ，则 $E_{i}=4$ ；
加告 $4.5 p / 11 \leqslant e_{i}<5.5 p / 11$ ，则 $E_{i}=5$ ；
细巷 $3.5 p / 11 \leqslant e_{i}<6.5 p / 11$ ，则 $E_{i}=6$ ；
如果 $6.5 p / 11 \leqslant e_{i}<7.5 p / 11$ ，则 $E_{i}=7$ ；
拿期条辝字符是铺误的。
（）D 4 今值 $E_{1}, ~ E_{2}, ~ E_{3}$ 和 E_{4} 为炎键学在泽码表中查找字符（见表2）。
（i）化表中找到该受符的用校验值 V, V 的值应与该字符定义的条的模块数相等。
（0）核詨下式：

$$
(V-1.75) p / 11<\left(b_{1}+b_{2}+b_{3}\right)<(V+1.75) p / 11
$$

如果不成立则字符是错误的。
该算法间接的用条码字符的奇偶性来发现非系统性的单个模块边缘的错误。
月以 1.5 个步骤对第一个字符译仍，如果第一个条码字符为起始符，则按从左至右的方向译码，如果第一一个条码字符不是起始符而是终止符，则将所有的条矿字符序列按相反的方向译码。

当所有的条码字符都被译码之后，要确保一个有效的起始符，一个有效的终止符和一个正确的符号校验字符。

根据条码符号中使用的起始符，切换字符和转换字符，从字符集 Λ ，字符集 B 或字符集 C 中将符号的字符翻译为适当的数据字符。

注：在本符等算法中，运用从一个边缘到相似边缘的尺寸（ e ）和一个附加尺寸，即三个条宽的总和。
表 2 对 128 条码译码时的边缘误差

学符值	E_{1}	E_{2}	E_{3}	E_{1}	V	符值	E_{1}	E_{2}	E_{3}	E_{4}	V
00	3	3	4	4	6	03	3	3	3	4	4
01	4	4	3	3	6	04	3	3	4	5	4
02	4	4	4	4	6	05	4	4	3	4	4

GB／T 15425－2014

表2（续）

孚符值	E_{1}	E_{2}	E_{3}	E_{1}	V	学符值	E_{1}	E_{2}	E_{3}	E_{1}	V
06	3	4	4	3	4	40	5	4	2	2	4
07	3	4	5	1	4	41	5	4	4	4	4
08	4	5	4	3	4	42	2	3	3	4	6
09	4	3	3	3	4	43	2	3	5	6	6
10	4	3	4	4	4	44	4	5	3	4	6
11	5	4	3	3	4	45	2	4	4	3	6
12	2	3	4	5	6	46	2	4	6	5	6
13	3	4	3	4	6	－ 47	4	6	4	3	6
14	3	4	－ 4	5	6	48	4	4	4	3	8
15	2	4	5	4	6	19	3	2	4	6	6
16	3	5	4	3	－ 6	50	5	4	2	4	6
17	3	5	5	4	6	51	3	4	4	2	6
18	4	5	5	3	6	52	3	4	6	4	6
19	4	3	2	4	6	53	3	4	4	1	8
20	4	3	3	5	6	54	4	2	2	3	！
21	3	4	5	3	6	55	4	2	4	5	，
22	1	5	4	2	6	56	－ 6	4	2	3	\％
23	1	3	3	4	8	57	4	3	3	2	\％
24	4	2	3	4	6	58	4	3	5	4	\bigcirc
25	5	3	2	3	6	59	6	5	3	2	6
26	5	3	3	4	6	60	4	5	5	2	8
27	4	3	4	3	6	61	4	3	5	5	4
28	5	4	3	2	6	62	7	4	2	2	6
29	5	4	4	3	6	63	2	2	3	4	4
30	3	3	3	3	6	64	2	2	5	6	4
31	3	3	5	5	6	65	3	3	2	3	4
32	5	5	3	3	6	66	3	3	5	6	4
33	2	2	4	5	4	67	5	5	2	3	4
34	4	4	2	3	4	68	5	5	3	4	4
35	1	4	4	5	4	69	2	3	4	3	4
36	2	3	5	4	4	70	2	3	6	5	4
37	4	5	3	2	4	71	3	4	3	2	4
38	4	5	5	4	4	72	3	4	6	5	4
39	3	2	4	4	4	73	5	6	3	2	4

表2（续）

字符值	E_{1}	E_{2}	E_{3}	E_{1}	V	字符值	E_{1}	E_{2}	E_{3}	E_{4}	V
74	5	6	4	3	4	91	5	3	3	3	8
75	6	5	3	3	4	92	2	2	2	5	6
76	4	3	112	2	4	93	2	2	4	7	6
77	5	4	4	2	8	94	4	4	2	5	6
78	6	5	2	2	4	95	2	5	5	2	6
79	4	7	5	2	6	96	2	5	7	4	6
80	2	2	3	6	6	97	5	2	2	2	6
81	3	3	2	5	6	98	5	2	4	4	6
82	3	3	3	6	6	99	2	4	4	5	8
83	2	5	6	3	6	100	2	5	5	4	8
84	3	6	5	2	6	101	4	2	2	5	8
85	3	6	6	3	6	102		2	2	4	8
86	5	2	3	3	6	103	3	2	5	5	4
87	6	3	2	2	6	104	3	2	3	3	4
88	6	3	3	3	6	105	3		3	5	6
89	3	3	3	5	8	Stop Λ	5	6		2	6
90	3	5	5	3	8	StopB		2		4	6

4.5 符号质量

4．5．1 一般说明

条码符号检测和分级应按照 GB／T 18348 的规定进行。

4．5．2 可译码度（ V ）

可译码度是测量译码算法测量值与符号理论值的接近程度。
可译码度值的计算，采用下列方法。
可译码度通用公式：$V_{C}=K /(S / 2 n)$ 。
用 V_{1} 代替公式中的 $V_{C}: V_{1}=K /(S / 2 n)$ 。
其中：$K \cdots$ 测量值与参考阀值之间的最小差异；
n 11（每个字符的模块数）；
S 一字符的总宽度。
计算 V_{2} ：
$V_{2}=\frac{1.75-\left(\mathrm{ABC}\left(\left(W_{\mathrm{b}} \times \frac{11}{S}\right)-M\right)\right)}{1.75}$
其中：$M-$ 字符中条的模块数；
S－－字符的总宽度；

GB／T 15425－2014

W_{b} 字符中条（深色条）的宽度总和；
ABS 表示取后面括号中数的绝对值。
V_{C} 取 V_{1} 和 V_{2} 中的小者。
注：终止符创括一个附加的终止条，为了测量其可译码度，终止符需要检测两次，第一次使用从左至右的 6 个单元，
第一次使用从有至左的 6 个单元。对于一个标准的条码学符来说，两种 6 个单元的组合的宽度是相同的。

4．5．3 空白区

根据 GB／T 18348，GS1－128 条码中指定的实测最小空自区人寸为 $10 Z$ ，左，右侧空白区的每次扫描的评级应按如下规则：
空自区 $\geqslant 10 Z$
4 级（ A ）；
空白区＜10Z
0 级（F）。

5 GS1－128 条码的应用参数

5.1 符号高度

GS1－128 条码符号的条高通常为 $32 \mathrm{~mm}(1.25 \mathrm{in})$ 。实际的符号高度应根据具体的应用要求确定。

5.2 符号长度

5．2．1 符号长度的计算

GS1－128 条矿符宂的长度取决于编码的字符个数：
1 个起始符
11 个模块
FNC1
11 个模块
1 个符号校验字符
11 个模块
1 个终止符
13个模块
N 个条码字符
$N \times 11$ 个模块

共计：
（ $11 N+46$ ）个模块
其中 N 为符号中条码字符的个数，包括含在数据中的辅助字符（切换字符和转换字符）。
一个模块等于符号中的 X 个寸。
字符集 C 允许在一个条码字符中表示 2 位数字，因此，使用字符集 C 对数字进行编码，是表示其他字符密度的两倍。

符号两侧的空向区是必须的，其最小宽度均为 $10 X$ 。
包括空白区在内的符号的总长度为：$(11 N+66) X$ 。

5．2．2 最大符号长度

决定 GS1－128 条码的符号长度的参数有两个：物理长度取决于所编码的字符数和所使用的模块宽度（ X 的尺寸），字符数包括辅助字符。

GS1－128 条码符号最大长度须符合以下两个要求：

- 包括空白区在内，最大物理长度不能超过 $165 \mathrm{~mm}(6.5 \mathrm{in})$ ；
- 可编码的最大数据字符数为 48 ，其中包括应用标识符和作为分隔符适用的 FNC1 字符，但不包括辅助字符和校验符。

5.3 供人识别字符

与条码对应的供人识别字符通常放在条码符号的下部或上部。校验符不是数据的一部分，不在供人识別字符的格式中显示。

在 GS1－128 条矵符号中没有说明供人识别字符的确切位惪和表示它们所使用的字体，但推荐选用 GB／T 12508 中规定的 OCR－B 字符集，字符应清晰易读，与条码有明确的联系，且不能占用空向区。

应将供人识别字符中的应用标识符用圆括号扩起来，以明显区别于其他数据。
注：圆括号不是数据的一部分，H不在条码符号中编码。

5.4 符号等级要求

用符号等级的形式评价符号质量，其参数的定义按照 GB／T 18348 的规定。该等级包括等级水平，测量孔径以及用于测量的光的波长。GS1－128 条码符号等级要求见表3。

表 3 GS 1－128 条码符号等级要求

条码类型	（20）符年等级
CSl 128 条码（ $X<0.495 \mathrm{~mm}$ ）	$\geqslant 1.5 / 06 / 670$
（SS $1-128$ 条码（ $X \geqslant 0.495 \mathrm{~mm}$ ）	$\geqslant 1.5 / 10 / 670$

5：位笶数据（FNC1）

S S 1 1 2 8 条码符号被识读，识读器中应设定以＂］C1＂为前敠码的数据。起始符，终止符，功能字符，地換等符和转换字符以及校验符不创括在传送的数据中。
（SS1－128 条矿符号在传送数据时按以下描述进行，参见 GB／T 18347－2001的附录 B：
FNC1 字符出现在第 3 个或后而的其他字符位置时，传送为ASCII字符29（GS）；
当 FNCI 字符H现在第1位置时，指示在码制标识符中的变数值1，但不在传送的信息中表示。

6 GS 1－128 条码字符串编码／译码规则

6.1 使用应用标识符和链接的 GS 1－128 条码基本结构

6．1．1 GS1－128条码符号的基本结构（不包括空白区）

所有使用 GS1 应用标识符的 GS1 条码都拥有特定的符号字符，以表示该条码是按照 GS1 应用标识规则进行编码的。GS1－128条码在紧跟起始符后的位置上使用 FNC1 字符，在全球范围内这一双字符起始图形仅供 GS1 系统使用。这样可以将 GS1－128 条码与 128 条码区分开来。

图6 GS1－128条码符号结构
所有使用 GS1 应用标识符的 GS1 条码允许多个单元数据串编码在一个条码符号中，这种编码方式称为链接。链接的编码方式比分别对每个字符串进行编码节省空间，因为只使用一次符号控制字符。同时，一次扫描也比多次扫描的准确性更高，不同的元素串可以以一个完整的字符串供条码扫描器中传送，具体参照图6。

对于从链接的条码符号中传送的不同字符串需要进行分析和加工，为简化操作并缩减符号的长度，对一些字符串的长度进行了预先的设定（见表 4）。表 4 中没有出现的字符串如果不是处于符号的最后 （校验符之前）时，必须在其后紧跟一个 FNC1 字符，用来标识字符串的边界并与后面的字符串区分开来。

6．1．2 预定义长度的应用标识符

表 4 包含 5 所有已被预定义长度，并且不需要分隔符的应用标识符，具体规定见 GB／T 16986。
表4 预定义长度指示符表

表4所列的字符数是限定的字符长度，并且永远不变。括号中的数字是预留的尚末分配的应用标识符。

6.2 链接

6．2．1 预定义长度字符串的链接

应用 GS1－128 条码字符时，可以将多个字符串链接起来。不变的预定义长度（字符数）说明了与表 4 这前 2 位应用标识符有关的字符串的总长度（包括应用标识符）。应用标识符前 2 位没有列在表 4中的数据，即使其应用标识符说明的数据是定长的，也要视为可变长度的数据。

构造一个由预定义长度的应用标识符链接的字符串时，不需使用数据分隔字符，每个字符串后紧跟下一个应用标识符，最后是校验符及终止符。

示例：将 GS1 全球贸易项日标识代码（GTIN） 95012345678903 与净重 4 kg （见图7，图8）链接就不需要使用数据分隔字符。从表4中可见：

01 预定义字符串长度为 16 位。
31 预定义字符串长度为 10 位。
GTIN 95012345678903

净重 4.00 kg

图7 GTIN与净重的分别表示

GTIN 95012345678903 ＋净重 4.00 kg

图8 GTIN 与净重的链接表示

6．2．2 可变长度字符串

对于可变长度字符事的链接（指所有应用标识符的前 2 位不包含在表 4 中的情况），需要使用数据分隔字符。数据分隔符使用 FNC1 字符。FNC1 紧跟在可变长度数据串最后一个字符的后面，FNC1后紧跟下一个字符串的应用标识符。如果字符串为编码的最后部分，则其后不用 FNC1 分隔符，而是紧跟校验符和终止符。

示例：将单价（例如，365）与批号（例如，123456）（见图9，图10）链接时，需要在每个计量单位的价格后面使用数据分隔字符。

图9 每个计量单位的价格与批号的分别表示

单价 $365+$ 批号 123456

图10 每个计量单位的价格与批号的链接表示

6．2．3 预定义长度和可变长度字符串

当预定义长度字符击与其他字符串混合链接时，建议将预定义长度字符事放在可变长度字符串的前面，可以减少链接所需的条死字符。

6.3 分隔字符（ FNC 1 ）

在译码的数据中中分隔字符以＜GS＞（GB／T1988 七位编码字符集，ASCII 字符29）\｜现，所有的非预定义字符串后面都要跟一个 FNC1 分隔符，但在以 GS1－128 条矿符号表示的最后一个字符串后面不需要 FNCl 字符。

6．4 ITF－14 与 GSI－128 条码及其他码制的混合使用

EAN／UCC－14 编码可以用 ITF－14 条码表示，也可以用 GS1－128 条码表示。当要表示全球贸易项目标识代码的附加信息时，应使用 GS1－128 条码。在这种情况下，GTIN 可以用 ITF－14 或 GS1 系统的其他码制表示，而附加的数据应使用 GS1－128 条码表示。

6.5 符号位置

作为表示辅助信息的 GS1－128 条码（辅助条码）的首选位置应与包含 GTIN，SSCC 或其他 GS1 代码的独立条码（主条码）在同一水平线上，并且辅助条码应在不影响主条码的空向区的前缀下尽量靠近主条码。

辅助条码应与主条码的方向一致。
链接包含 GTIN，SSCC 或 GS1 其他代码的条码符号的位置应遵守单个条码符号推荐的位置。
商品条码 GS1－128 条码具体的放置位置按照 GB／T 14257 的相关要求。

附 录 A

（资料性附录）
GS1－128 条码符号长度最小的字符集选择及应用示例

A． 1 一般要求

在 GS1－128 条矿符号（或其他 128 条码）中，通过使用不同的起始，切换和转换字符的组合，可以对相同的数据有不同的表示。

将以下规则置于打印机控制软件中，可以使给定的数据符号的条码字符数最少（符号宽度最小）。

A． 2 起始符的选择

起始符的选择一般遵循以下原则：
a）如果数据以 4 位或 4 位以上的数字型数据符开始，则使用起始符 C；
b）如果数据中在小写字母字符之前出现 ASCII 控制字符（如 NUL），则使用起始符 A；
c）其他情况，使用起始符 B；
 （1）符集 A 或字符集 B ，参照 A .2 b ）和 A .2 c ）。

如果在字符集 Λ 或予符集 B 中同时虫现 4 位或 4 位以上的数字字符：
a）如果数字型数据字符的个数为偶数，则在第一个数字之前插人 CODE C 字符将字符集转换为字符集 C。
（1）如果数字型数据＂符的个数为奇数，则在第一个数字之后抨入 CODE C 字符将字符集转换为学符集 C。

a）如果在该控制字符之后，在另一个控制字符之前引现一个小写字母字符，则在该控制字符之前插入转换字符；
b）否则，在控制字符之前插入 CODE Λ 将字符集转换为字符集 A° 。
A． 6 当使用字符集 Λ ，并且数据中出现小写字母字符时：
a）如果在该小写字母字符之后，在另一个小写字母字符之前出现一个控制字符，则在该小写字母字符之前插入转换字符；
b）否则，在小写字母字符之前插入 CODE B 将字符集转换为字符集 B。
A． 7 如果在字符集 C中出现一个非数字字符，则在该非数字字符之前插入 CODE A 或 CODE B，具体应用参照 A． 2 b ）和（ 2 C ）。

注1：在以上规则中，＂小写字母＂的含义为学符集 B 中字符值为 $64 \sim 95$（ASCII 值为 $96 \sim 127$ ）的字符。即所有的小写字母字符和字符＂，$,\{, \mid\},, \sim$ ，DEL＂。＂控制字符＂的含义为䆘符集 Λ 中学符值为 $64 \sim 95$（ASCII 值为 $00 \sim$ 31）的字符。
注 2：如果 $\mathrm{FNC1}$ 出现在起始符之后的第 1 个位置或在数字字段中的第奇数个位置时，将 $\mathrm{FNC1}$ 视为 2 位，以确定合适的字符集。

A． 8 应用实例

图 $\Lambda .1$ 为只考虑＂ 4 位或 4 位以上的数字型数据使用 CODE C＂，而未考虑 $\Lambda .3$ 中数字型数据字符

的个数奇偶性的情况，符号长度未达到最小的应用示例，造成字符串多一个条码字符。

（10）001135（21）013037001（240）000008744

图 A． 1 符号长度未能最小应用示例
表 A． 1 为图 A． 1 对应的条码数据结构。
表 A． 1 图 A． 1 的条码数据结构

标识代码	（10）001135（21）013037001（240）00008744
单元数据串	StartC F $F_{1} 10001135 F_{1} 2101303700$ CodeB 1 F_{1} CodeC 2400000874 CodeB 4 B Stop
字符及模块数	$24+1$（终止符）个条码字符，76 条和 75 空

图 $\Lambda .2$ 为考虑了 A .4 b ），符合符号长度最小规则的应用示例。表 $\Lambda .2$ 为图 $\Lambda .2$ 对应的条码数据结构。

（10）001135（21）013037001（240）000008744

图 A． 2 符号长度最小应用示例

表 A． 2 对应的条码数据结构

密户提供的条码样品的数据结构	
标识代码	$(10) 001135(21) 013037001(240) 00008744$
单元数据我	StartC $\mathrm{F}_{1} 10001135 \mathrm{~F}_{1} 2101303700$ CodeB $1 \mathrm{~F}_{1} 2$ CodeC 400000874412 Stop
字符及模块数	$23+1$（终止符）个条码字符，73 条和 72 空

附 录 B
（资料性附录）
条码字符值与 ASCII 值的关系
条矿字符值（ S ）与 $\Lambda \mathrm{SCII}$ 值之间的转换关系如下：字符集A：如果 $S \leqslant 63$ ，则 ASCII 值 $=S+32$ ；

如果 $64 \leqslant S \leqslant 95$ ，则 \wedge SCII 值 $=S-64$ 。
字符集 B：如果 $S \leqslant 95$ ，则 Λ SCII 值 $=S+32$ 。
其对应关系见表1。

附 录 C

（规范性附录）

GS 1－128 条码符号校验字符值的计算方法

GS1－128 条码符号校验字符按下列方法计算：
1）查表 1 得到字符的值。
2）给每个条码字符位置分配一个权数。起始符和 $\mathrm{FNC1}$ 字符的权数均为 1 ，然后，在起始符， FNC1 字符后而从左至右位置的权数依次为 $2,3,4,5, \cdots \cdots, n$ ，这些字符中不包括校验字符本身。 n 表小除起始符，FNC1 字符，终止符和校验字符以外的所有标识数据和特殊信息的字符数。
3）将每个字符的值乘以其相应的权。
4）将第 3 步所得的结果求和。
5）将第 4 步的求和结果除以 103 。
6）第 5 步所得的余数为符号校验字符的值。
示例：计算数据＂Λ IM 1234 ＂校验字符值的步摖参见表C．1。
表 C． 1 计算＂AIM1234＂的校验字符的步骤

附 录 D

（资料性附录）

GS 1－128 条码符号的处理——基本逻辑

准确分析扫描器输 1 的全部字符串的流程图 D． 1 如下：

图 D． 1 流程图

中国标准出版社出版发行
北京市朝阳区和平里西街用2号（100029）
北京市西城区三里河北街 16 号（100045）
网址 www．spc．net．cn
总编窒：（010）64275323 发行中心：（010）51780235
读者服务部：（010）68523946
中国标准计版社秦皇岛印刷厂印刷
各地新华书店经销

开本 $880 \times 1230 \quad 1 / 16$ 卵张 1.75 字数 39 下字
2015年2月第一版 2015年2月第一次印刷

扮足：155066•1－50611

如有印装差错 由本社发行中心调换
版权专有 侵权必究
举报电话：（010）68510107

